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ABSTRACT

Active regions (ARs) are typical magnetic structures found in the solar atmosphere. We calculate several magnetohydrostatic (MHS)
equilibrium models that include the e↵ect of a finite plasma-� and gravity and that are representative of these structures in three
dimensions. The construction of the models is based on the use of two Euler potentials, ↵ and �, that represent the magnetic field
as B = r↵ ⇥ r�. The ideal MHS nonlinear partial di↵erential equations are solved numerically using finite elements in a fixed
3D rectangular domain. The boundary conditions are initially chosen to correspond to a potential magnetic field (current-free) with
known analytical expressions for the corresponding Euler potentials. The distinctive feature is that we incorporate the e↵ect of shear
by progressively deforming the initial potential magnetic field. This procedure is quite generic and allows us to generate a vast variety
of MHS models. The thermal structure of the ARs is incorporated through the dependence of gas pressure and temperature on the
Euler potentials. Using this method we achieve the characteristic hot and over-dense plasma found in ARs, but we demonstrate that the
method can also be applied to study configurations with open magnetic field lines. Furthermore, we investigate basic topologies that
include neutral lines. Our focus is on the force balance of the structures and we do not consider the energy balance in the constructed
models. In addition, we address the di�cult question of the stability of the calculated 3D models. We find that if the plasma is
convectively stable, then the system is not prone in general to develop magnetic Rayleigh-Taylor instabilities. However, when the
plasma-� is increased or the density at the core of the AR is high then the magnetic configuration becomes unstable due to magnetic
buoyancy.
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1. Introduction

It is well established that the structure and dynamics of the so-
lar corona is dominated by the magnetic field. In many struc-
tures of the corona, such as active regions (ARs) and coronal
holes (CHs), magnetic forces are prevailing and plasma pressure
gradients and gravity are often ignored. This is only valid as a
first order approximation and leads to the so called force-free
field models. Even under this assumption sophisticated numeri-
cal computations are required to calculate such force-free fields
in three dimensions using as boundary conditions the obtained
magnetic field vector measured in the solar photosphere. The
reader is referred to Wiegelmann & Sakurai (2021) for a review
about this topic. In other regions of the solar atmosphere such as
at the interface region between the solar photosphere and corona
the relative importance of magnetic and plasma forces change
by several orders of magnitude. Zhu & Wiegelmann (2018) have
focused on this problem and have solved the magnetohydro-
static (MHS) equations with the help of an optimisation prin-
ciple. Other approaches have recently applied by Zhu & Wiegel-
mann (2022). A recent review of the use of 3D MHS methods for
solar magnetic field extrapolation has been given by Zhu et al.
(2022).

Although the assumption of zero plasma beta in the solar
corona is commonly applied, it is interesting to assess the possi-
ble e↵ects of plasma pressure and gravity on the magnetic field.

In particular, and from the practical point of view it is appeal-
ing to construct MHS models using methods that deviate from
the current trends based on optimisation processes, relaxation
techniques or Grad-Rubin methods (see Wiegelmann & Sakurai
2021). The idea of the present paper is to use a method devel-
oped and applied in the past but that unfortunately has not been
extended to the 3D case at least in the study of coronal structures.
As a previous step in two dimensions Terradas et al. (2022) have
recently obtained MHS equilibrium solutions that represent CHs
and ARs. Based on the works of Low (1975, 1980) and using the
flux function, Terradas et al. (2022) have reproduced the main
features of ARs, paying particular attention to the high pressure
and di↵use background of these structures instead of the single-
loop structures. The aim of the present paper is to extend the pre-
vious two-dimensional work to the three-dimensional case with
the purpose of having a better understanding of the e↵ect of gas
pressure and gravity on a more realistic magnetic field geome-
try. For simplicity reasons the analysis of the energetics of the
system due to the presence of conduction, radiation and heating
is not considered in the present work. In addition, we mostly fo-
cus on closed magnetic states representative of ARs in the solar
corona.

In the present work the extension of Terradas et al. (2022)
to three dimensions is based on the use of Euler potentials (EPs
hereafter) instead of the flux function. They were originally de-
vised by Euler to describe incompressible velocity fields. The
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application of EPs is not new in magnetohydrodynamics (MHD),
they are well known mostly in the context of magnetospheric
studies (see e.g. Cheng 1995; Zaharia et al. 2004; Zaharia 2008).
The reader is referred to the fundamental works on the topic of
Stern (1967, 1970) (see also Stern 1976, 1994a,b). A significant
number of examples using EPs can be found in Schindler (2006)
and also in studies related to magnetic reconnection (Hesse &
Schindler 1988; Hesse & Birn 1993). The EPs are also referred
as Clebsch variables (e.g. Roberts 1967). Due to reasons that are
discussed in more detail later, there is only a limited number of
investigations that have used EPs to study magnetic structures in
the solar atmosphere. Barnes & Sturrock (1972) took a model
to represent the magnetic-field configuration of a sunspot of one
polarity surrounded by a magnetic-field region of opposite po-
larity and used EPs to study how a force-free field structure can
be metastable and converted into an open field structure by an
explosive MHD instability. Zwingmann (1984, 1987) used EPs
to investigate the onset mechanisms of eruptive processes in the
solar corona, while Romeou & Neukirch (1999, 2001, 2002),
mainly using 2D or 2.5D structures, have investigated sequences
of magnetostatic equilibria that may contain bifurcation points
using a similar approach as in Zwingmann (1987) and Platt &
Neukirch (1994) by employing a numerical continuation method
to capture the di↵erent branches of the solutions. As far as we
know, the fully 3D case using EPs has not been addressed in the
analysis of magnetic configurations of the solar corona and this
is one of the main purposes of the present work.

The general 3D MHS problem is quite intricate and ana-
lytical solutions are only obtained under very specific condi-
tions (see Low 1985, 1991, 1992, 1993a,b; Neukirch 1995, 1997;
Neukirch & Rastätter 1999; Neukirch & Wiegelmann 2019). The
previous works are not based on EPs and essentially assume a
very particular form of the current density in order to achieve
analytical solutions. EPs allow us a more general treatment of
the problem but the drawback is that first, a purely numerical
treatment is required in most of the cases, and second the rep-
resentation of a genuinely 3D magnetic field by two EPs exists
as a global representation, valid in the whole domain, only if the
magnetic field has a simple topology. In particular, we can al-
ways find Euler potentials ↵ and � which represent the magnetic
field correctly locally but in 3D we can only guarantee that the
same Euler potentials represent the magnetic field everywhere, if
the domain contains one surface which each field line intersects
only once and if the magnetic field does not have any null points
(B = 0) inside the domain, or if the magnetic field has a vector
potential A for which A · B = 0 (Rosner et al. 1989).

It is known that numerical methods based on finite elements
are a powerful route to calculate equilibrium solutions under
quite broad conditions. They have successfully been used in the
past in 2D by Zwingmann et al. (1985); Zwingmann (1987); Platt
& Neukirch (1994); Romeou & Neukirch (1999, 2001, 2002).
This is the technique chosen in the present work to construct a
wide range of MHS solutions in 3D based on EPs. But moving to
3D is challenging for several reasons. First of all the size of the
matrices involved in the finite element discretisation increases
significantly, slowing down the process of obtaining a solution.
Second, an appropriate starting point or seed of the initial dis-
tribution of the EPs in 3D is required. For this reason, we still
need to use potential magnetic fields with known analytical ex-
pressions for the corresponding EPs as a starting point of our
finite element calculations. Even if we know the magnetic field
components the calculation of the EPs is not straightforward.
The initial states are the key ingredient to include more realis-
tic e↵ects, such as magnetic shear, in the configurations. This is

achieved by gradually changing the magnetic field (i.e., the EPs)
on the boundaries of the domain. Therefore, a di�culty of the
method used here relies on the initial configuration required by
the numerical method to converge and achieve a final solution.
It is worth mentioning that the goal of this paper is not to use an
observed magnetic field to construct a MHS solution. The main
objective is to assess the benefits and di�culties of using EPs in
3D under somewhat idealised conditions.

Finally, an important question to be decided is whether the
3D equilibrium configurations that are numerically obtained are
in fact stable. Due to the interplay between magnetic and buoyant
forces, the magnetic Rayleigh-Taylor instability or the Parker’s
instability may be present in the system, which is important in-
formation to be able to assess the relevance of the model for
representing solar magnetic field configurations. The presence
of electric currents can also a↵ect the stability of the system. In
the magnetospheric context MHD eigenmodes and the calcula-
tion of field line resonances in 3D has been addressed in the past
(see for example Cheng 1995, 2003; Rankin et al. 2006; Kabin
et al. 2007). Here, instead of calculating the eigenmodes of the
configuration, we use the result devised by Zwingmann (1984,
1987) in the context of the study of coronal magnetic structures.
This author realised that under some conditions the problem of
the stability in 3D, although he applied the method to 2.5D, can
be reduced to the analysis of the discretised version of an op-
erator that is needed during the calculation of the equilibrium
solutions. We apply this procedure to the 3D case in the last part
of this work to address the significant issue of the stability of the
seized MHS solutions.

2. Magnetohydrostatic equilibrium in
three-dimensions using Euler potentials

We look for solutions to the following equation

1
µ0

(r ⇥ B) ⇥ B � rp + ⇢g = 0, (1)

where B is the magnetic field, p is the gas pressure, ⇢ the plasma
density, g the gravitational acceleration on the solar surface and
µ0 the magnetic permeability of free space. The magnetic field
from Maxwell’s equations has to satisfy that

r · B = 0. (2)

We suppose that the plasma is composed of fully ionised hydro-
gen that satisfies the ideal gas law

p =
R

µ̄
⇢T, (3)

where T is the temperature, R the gas constant, and µ̄ the mean
atomic weight. The aim is to obtain solutions to the previous
equations but we have a system of five equations (Eqs. (1)-(3))
but six unknowns, B (three components), p, ⇢ and the temper-
ature T . An energy equation, or sometimes termed as the heat
transport equation, is required to have a closed system. Here we
adopt the approach of Low (1975) in which the energy equation
is not solved directly. Once we have obtained a solution we can
calculate the corresponding energy balance that the system has
to satisfy in order to keep a thermal equilibrium, but this is not
the main goal of the present study.

In 2D the equations can be written in terms of the flux func-
tion and the force balance leads to a Grad-Shafranov equation,
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this is the procedure adopted in Terradas et al. (2022). The func-
tional dependence of pressure and temperature on the flux func-
tion determines how the plasma is coupled to the magnetic field.
However, if we want to employ the equivalent approach in 3D
the magnetic field needs to be written in terms of two EPs ↵(r)
and �(r) (e.g. Roberts 1967; Stern 1970, 1976). In this case we
have that

B = r↵ ⇥ r�. (4)

Using vector identities it is easy to show that Eq. (2) is automat-
ically satisfied.

The EPs are constant along the field lines of B because B ·
r↵ = 0 and B · r� = 0. Interestingly, this provides a method
to compute ↵ and � in the domain when B is known (see Stern
1970, and Sect. 5). This is achieved, for example, by fixing the
values of the EPs on the part of the boundary of positive polarity
and transporting them into the domain along the lines. In this
case the problem is linear.

From Eq. (4) the magnetic field components in terms of the
EPs read

Bx(x, y, z) = @y↵(x, y, z) @z�(x, y, z) � @z↵(x, y, z) @y�(x, y, z), (5)
By(x, y, z) = @z↵(x, y, z) @x�(x, y, z) � @x↵(x, y, z) @z�(x, y, z), (6)
Bz(x, y, z) = @x↵(x, y, z) @y�(x, y, z) � @y↵(x, y, z) @x�(x, y, z). (7)

These equations indicate that even in the situation of a known
magnetic field, the calculation of the EPs is not trivial due to the
products of partial derivatives. According to Eqs. (5)-(7) each
component of the magnetic field only depends on the derivatives
of the EPs in the perpendicular direction to that component. Dif-
ferent methods to calculate the EPs are discussed in Sects. 4 and
5.

The current density is

J = r ⇥ (r↵ ⇥ r�), (8)

and the corresponding components in Cartesian coordinates con-
tain partial derivatives of second order at most but each com-
ponent contains up to 8 di↵erent terms. The complexity of the
system has significantly increased with respect to the 2D case,
described in terms of the flux function or the vector potential.

It can be shown that in 3D the condition of force balance
using the EPs reduces to the following coupled partial di↵eren-
tial equations (see for example Birn & Schindler 1981, Schindler
2006, Neukirch 2015 and references therein)

r↵ · r ⇥ (r↵ ⇥ r�) = �µ0 @�p, (9)
r� · r ⇥ (r↵ ⇥ r�) = µ0 @↵p, (10)

@z p = �⇢g, (11)

where p(↵, �, z) is the gas pressure, ⇢(↵, �, z) is the plasma den-
sity, and we have assumed that the gravitational force is con-
stant and pointing in the negative z�direction. Both plasma pres-
sure and density may generally depend on the two EPs and
the gravitational potential, which in our case is identical to the
z�coordinate up to a constant factor. We emphasise that the par-
tial derivatives of the pressure in Eqs. (9) – (11) are to be taken
under the condition that the other variables on which the pressure
depends are kept constant. In particular the partial z-derivative
in Eq. (11) is taken with the EPs being kept constant, i.e. it is a
derivative taken along field lines. Using the ideal gas law, Eq. (3),
the most general solution to Eq. (11) is

p(↵, �, z) = p0(↵, �) e�
R z

0
µ̄g

RT (↵,�,z0) dz0
, (12)

where T (↵, �, z) is the temperature profile that can depend on the
z coordinate as well. We define a reference pressure scale height
as H = RT0/µ̄g, being T0 a normalisation temperature normally
taken as the coronal temperature. It is convenient to remark (see
also Low 1975) that in principle p0(↵, �) and T (↵, �, z) could be
multivalued along the same field line. Here we adopt the simplest
case where the same functional forms of p0(↵, �) and T (↵, �, z)
apply to all regions of space. In this situation two points at the
same height on any magnetic field line have the same pressure
and temperature.

If gravity is neglected p(↵, �) = p0(↵, �), meaning that pres-
sure is constant along magnetic field lines but can change from
line to line. Density is calculated from the ideal gas law using
the known profiles for p(↵, �, z) and T (↵, �, z). Equation (12) im-
poses a balance between the force due to the gas pressure gradi-
ent and the gravity force along the magnetic fields lines, while
Eqs. (9) and (10) represent the condition of force balance per-
pendicular to the magnetic field. The two coupled PDEs are non-
linear and each equation contains up to 21 di↵erent terms plus
the term due to gas pressure, constituting a rather complicated
system of coupled equations to solve. The equations are written
in divergence form when the problem is solved numerically, see
Appendix A for further details.

Equations (9)-(10) must be complemented with appropriate
boundary conditions (BCs) at the limits of the domain. Here we
consider an hexahedron, in particular a rectangular cuboid. The
spatial size of the cuboid is xmin  x  xmax, ymin  y  ymax,
and zmin  z  zmax (we take zmin = 0 in this work). Bound-
ary conditions need to be imposed at the six sides of the cuboid
to be able to solve the PDEs. The question that arises is which
are the natural conditions that must be satisfied by the equilib-
rium equations in the variables ↵ and �. The answer is found
using Grad’s functional (Grad 1964). It can be shown that the
first variation of the functional provides information about the
nature of the BCs (see Zwingmann 1987; Schindler 2006, for a
detailed derivation). There are two possibilities. The first case
corresponds Dirichlet conditions on ↵ and �, meaning that the
EPs are prescribed on the boundaries and they are not allowed to
change. Physically, this boundary condition forces the location
where a field line with labels ↵ and � cuts through the boundary,
fixing the footpoints of the field lines. For several reasons that
will become clear later, we chose the potential solutions (the
current free situation) as the Dirichlet boundary conditions on
our domain. The second case corresponds to homogeneous Neu-
mann conditions. It is not di�cult to show (see Schindler 2006)
that these conditions mean that the tangential component of the
magnetic field on the boundaries is zero, i.e., the magnetic field
is strictly normal to the boundary.

Since in our case we intend to reproduce the properties of
a 3D AR, we prefer to focus on Dirichlet conditions and not
forcing the magnetic field to be perpendicular to the faces of the
box which seems to be rather artificial when applied to a curved
magnetic field as that of a bipolar region. Neumann conditions
are typically applied to the upper boundary when one considers
the problem of magnetic configurations with di↵erent magnetic
topology inside the spatial domain (see for example Zwingmann
1987; Platt & Neukirch 1994), but this is out of the scope of the
present work.

3. General results for static ideal plasmas in
equilibrium

It is appropriate to recall some known results in MHD (see for
example Roberts 1967) that are be useful to interpret some of
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the general properties of MHS equilibria like the ones we obtain
later from our purely numerical calculations (see also Aly 1989).

We begin by introducing the gas pressure and magnetic ten-
sors

Tp = Ip, (13)

TB = I B2

2µ0
�

BB
µ0
, (14)

where I is the unit dyadic tensor. The static equation of motion
given by Eq. (1) reads now

0 = �r ·
⇣
Tp + TB

⌘
+ ⇢g. (15)

If we consider a general volume V with surface S , integrating
Eq. (15) over this volume and using Gauss’s theorem we obtain

0 = �
Z

S

⇣
Tp + TB

⌘
· dS +

Z

V
⇢g dV, (16)

where dS = n dS is the directed surface element and n the out-
ward normal vector of the surface. The gravitational force is left
as a body force here, but for self-gravitating system (di↵erent
to our case) it would be more convenient to write it as a gravi-
tational stress tensor similarly to the gas pressure and magnetic
field.

The terms that appear in Eq. (16) involve surface integrals
and are inevitably related to the BCs that are imposed in the spa-
tial domain. It is therefore convenient to understand clearly the
role of the BCs in the present problem. The basic type of BCs
used in this work are Dirichlet conditions, i.e., the EPs ↵(x, y, z)
and �(x, y, z) are imposed on the side boundaries of the system.
This means, according to Eqs. (5)-(7), that Bn = n · B, i.e., the
normal component of the magnetic field is prescribed by these
BCs. However, the magnetic field component lying in the plane
of each boundary, i.e., Bt, depends on the behaviour in the inte-
rior points of the domain and are not enforced. They adjust ac-
cording to the solution achieved inside the domain. These mag-
netic field components modify the inclination of the magnetic
field at the boundary and change the values of the magnetic stress
tensor TB.

We return to Eq. (16) which indicates that to have equilib-
rium there must be a balance between forces on the surface of
the volume, conditioned by the BCs, and the gravitational vol-
ume force. When gas pressure and gravity are neglected the total
magnetic stress on the surface of the volume must be zero. This
does not necessarily mean that the magnetic stress is zero at all
the points on the surface (in this case it is known that B = 0), it
is the integrated value that is zero.

Another interesting general result, closely related to the con-
servation of energy, is the virial theorem which is useful, among
other things, to check the validity of our numerical calculations
in the following sections and to extract conclusions about the be-
haviour of the system. In the static case the virial theorem includ-
ing gravity reads (e.g. Chandrasekhar 1961; McKee & Zweibel
1992; Kulsrud 2004)

0 = 3(� � 1)Ep + EB �

Z

S
r ·

⇣
Tp + TB

⌘
· dS � Eg. (17)

where r is a radius vector relative to an origin chosen to be inside
the volume V and � is typically taken to be 5/3. In the previous
equation the total internal energy is defined as

Ep =

Z

V

p
� � 1

dV, (18)

the total magnetic energy is given by

EB =

Z

V

B2

2µ0
dV, (19)

while the gravitational energy is

Eg = �

Z

V
r · ⇢g dV. (20)

It is important to realise that due to the Dirichlet conditions that
we use, the total magnetic energy in the system changes when,
for example, gas pressure is modified, meaning that EB is not
maintained constant even in the case when the same values of
↵ and � are used for the di↵erent equilibria. This is due to the
changes in TB which has two contributions: one that is fixed in
the present work due to Dirichlet boundary conditions, and an-
other term that changes to obtain an equilibrium under the pres-
ence of gas pressure and gravity.

The first two terms in Eq. (17) are always positive but the last
two terms might be negative and capable to provide the required
balance in the equation. The third term is due to the surface pres-
sure stress and magnetic stress, while the last term is due to the
integrated gravity on the volume.

4. The potential magnetic field in 3D

To find equilibrium solutions we have shown that we need to
provide the values of ↵ and � at the boundaries (Dirichlet BCs).
The EPs at the boundaries determine the global geometry of the
magnetic field inside the box and they must be chosen to repre-
sent the specific magnetic structure that is of interest, in our case
closed magnetic field lines representative of ARs. As a starting
point we use EPs that have an analytical expression, this is typi-
cally the case for potential magnetic fields with some symmetry
axis.

4.1. The magnetic bipole

One of the elementary magnetic arrangements that one can imag-
ine in 3D relies on the superposition of fictitious monopoles that
decay with distance as 1/r2,

B = a0
r̂
r2 , (21)

where a0 is a constant. We start by superposing two magnetic
monopoles of opposite polarity situated below our reference
plane at z = 0 at a depth z = �z0 and separated a distance d
from the origin. The magnetic field components of this structure
in Cartesian coordinates are

Bx(x, y, z)/B0 = L2 x � d
�
(x � d)2 + y2 + (z + z0)2�3/2

�
x + d

�
(x + d)2 + y2 + (z + z0)2�3/2 , (22)

By(x, y, z)/B0 = L2 y
�
(x � d)2 + y2 + (z + z0)2�3/2

�
y

�
(x + d)2 + y2 + (z + z0)2�3/2 , (23)

Bz(x, y, z)/B0 = L2 z + z0
�
(x � d)2 + y2 + (z + z0)2�3/2

�
z + z0

�
(x + d)2 + y2 + (z + z0)2�3/2 , (24)
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where L is a distance used for normalisation purposes that is
taken to be equal to the pressure scale height H previously de-
fined. This magnetic field is current-free and three-dimensional
but it still has axial symmetry. This configuration has been used
in the past by, for example, Semel (1988) and Cuperman et al.
(1989).

The next step is to describe the previous magnetic field in
terms of the EPs, given by Eqs. (5)-(7). As explained in Sect. 2
these equations are nonlinear and in general di�cult to solve
for ↵ and � even if Bx, By, Bz are known functions like in the
present case. However, the symmetry of the magnetic bipole (ro-
tational symmetry with respect to the line that connects the two
monopoles) allows us to derive the corresponding EPs. As a ge-
ometrically simpler example, we first consider an arcade that is
invariant in the y�direction, e.g. the arrangement investigated by
Zwingmann (1987). In the case without shear the second EP is
� = y while ↵ is just the flux function (or vice versa). Isocon-
tours of � are vertical planes that are labeled according to the
value of y. Applying this geometrical property to the rotationally
symmetrical bipole, we simply have that � = ✓, with ✓ being the
angle with respect to the line that connects the two monopoles.
Therefore, in Cartesian coordinates we have that

�(y, z) = arctan
y

z + z0
. (25)

Since @x� = 0 it is easy to calculate the EP ↵ by direct integration
of Eqs. (5)-(7),

↵(x, y, z)/↵0 =
x � d

p
(x � d)2 + y2 + (z + z0)2

�
x + d

p
(x + d)2 + y2 + (z + z0)2

. (26)

An example of the spatial distribution of ↵ and � in 3D based on
the previous expressions is shown in Fig. 1. The intersection of
di↵erent isosurfaces of constant ↵ and � coincide with the mag-
netic field lines. Hence, each magnetic field line is characterised
by a pair of values (↵, �).
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Fig. 1. Potential magnetic field lines (pink curves with arrows) and two
magnetic surfaces associated to the EPs ↵ (green color) and � (brown
color) for a bipole with d = 0.25 and z0 = 0.5 (all the lengths are here-
after normalised to H). The intersection of the two surfaces, see the yel-
low curve, represents a particular magnetic field line. The distribution
of the vertical component of the magnetic field at z = 0 is represented
in gray colors.

It is not di�cult to check that the EPs given by Eqs. (25)
and (26) satisfy, according to Eq. (8), that Jx = Jy = Jz = 0,

i.e., the magnetic field is potential and Eqs. (9) and Eqs. (10) are
fulfilled since the gas pressure has no e↵ect on the equilibrium
configuration in this case.

Since the potential solution has rotational symmetry it is con-
venient to use cylindrical instead of Cartesian coordinates. The
solution given by Eqs. (25)-(26) reads in cylindrical coordinates

�(✓) = ✓, (27)

as indicated earlier, while

↵(r, z)/↵0 =
z � d

p
r2 + (z � d)2

�
z + d

p
r2 + (z + d)2

, (28)

being independent of ✓. The z�coordinate is pointing now
along the symmetry axis in this new coordinate system (the
x�direction in the Cartesian coordinates).

The EPs are not unique since a di↵erent gauge leads to the
same magnetic field, but it is convenient to chose the most simple
geometrical surfaces for the EPs. For example, we have seen that
for the symmetric bipolar magnetic field � can be represented by
planes, and this is our preferred option, see Fig. 1.

4.2. The general analytic solution for the case with axial
symmetry

If we focus on the case in which the pressure gradient either van-
ishes or is in hydrostatic equilibrium with the gravitational force,
the potential structure in cylindrical coordinates is a solution to
the following equations (see also Kaiser & Salat 1997)

@2
rr↵ �

1
r
@r↵ + @

2
zz↵ = 0, (29)

@✓

 
1

2µ0

1
r2

h
(@r↵)2 + (@z↵)2

i!
= 0. (30)

Assuming that ↵ is independent of ✓ the second equation is auto-
matically satisfied and we only need to solve the first equation.
The simple bipole model given by Eq. (28) satisfies this equa-
tion. However, it is useful to generalise the method of finding
the potential solution for any magnetic spatial distribution on the
axis, ↵(0, z), and this is the purpose of the present section. As far
as we know the following derivation has not been reported in the
literature.

In order to avoid undesirable boundary e↵ects we wish to
solve Eq. (29) by imposing that ↵ = 0 for r ! 1. We use the
method of separation of variables and assume that

↵(r, z) = f (r) h(z), (31)

which leads to

f 00(r)
f (r)

�
1
r

f 0(r)
f (r)

= �
h00(z)
h(z)

= k2, (32)

being k the separation parameter and the derivatives are with re-
spect to the arguments of the functions. We obtain two separate
ODEs that share the parameter k. The easiest ODE to solve cor-
responds to the z�dependence which reads

h00 + k2h = 0. (33)

The solution to this equation is a superposition of a sine and a
cosine function,

h(z) = A cos (kz) + B sin (kz) . (34)
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being A and B some constants that need to be determined. The
separation parameter k appears in the argument of the functions.

Returning to Eq. (32), the ODE for the radial part is

f 00 �
1
r

f 0 � k2 f = 0. (35)

To solve this equation we assume that f (r) = rF (kr) which is
inserted into Eq. (35). This process leads to a modified Bessel
equation for F (kr), meaning that the general solution to Eq. (35)
is of the form

f (r) = r
h
C I1(kr) + D K1(kr)

i
. (36)

where I1(kr) and K1(kr) are the modified Bessel functions of or-
der one while C and D are constants that need to be determined
according to the BCs.

For r ! 1 we have that rI1(kr) ! 1 and therefore we
have to impose C = 0 to avoid this behaviour. On the contrary,
rK1(kr) ⇠

p
re�kr for large r which means that this solution goes

to zero at infinity. For r ! 0, rK1(kr) ' 1/k and has the correct
behaviour at the origin (finite and di↵erent from zero in general).

The formal solution to our problem taking into account the z
and r dependencies is the following superposition

↵(r, z) =
Z
1

0

⇥
A(k) cos(kz) + B(k) sin(kz)

⇤
r K1(kr) dk. (37)

The Fourier coe�cients A(k) and B(k) are determined from the
chosen profile for ↵ at r = 0 (i.e., on the axis), which according
to the previous expression is

↵(0, z) =
Z
1

0

⇥
A(k) cos(kz) + B(k) sin(kz)

⇤1
k

dk, (38)

where the value at the origin of rK1(kr) has been taken into ac-
count. Using the known result from Fourier analysis the coe�-
cients read

A(k)
k
=

1
⇡

Z
1

�1

↵(0, s) cos (ks) ds, (39)

B(k)
k
=

1
⇡

Z
1

�1

↵(0, s) sin (ks) ds. (40)

If ↵(0, z) is a symmetric function with respect to z = 0 then
B(k) = 0, while if it is anti-symmetric A(k) = 0.

The main result of this section is that we have found a gen-
eral expression, Eq. (37), that allows us to calculate the potential
solution in the r � z plane given any profile of ↵ on the axis
(i.e., ↵(0, z)). This solution is used later as BC to construct MHS
equilibria in 3D under the presence of gas pressure and gravity. It
is also adopted as the starting point to include magnetic shear in
the structure. A simple test of the validity of the previous expres-
sions is achieved by reproducing the double monopole potential
solution given by Eq. (28).

A similar approach can be applied to the case with the e↵ect
of the gas pressure included, as long as the derivative of this
magnitude with ↵ is proportional to ↵, i.e., the linear case (see
the analysis performed in Atanasiu et al. 2004). When gravity
is also present, no analytic solutions are available, as far as we
know.

The relevance of the procedure used before to construct solu-
tion becomes clear when we consider an example of a structure
that lacks symmetry along the axis, i.e. that is not symmetric
around z = 0 (in cylindrical coordinates). The first step is to

chose the particular form of ↵(0, z). In order to simplify the cal-
culations we chose a profile that leads to analytical results for
the Fourier coe�cients. Our deliberate choice is a Gaussian

↵(0, z) = C e�(
z�zs

w )2

, (41)

situated at zs (not necessarily equal to zero) and with a charac-
teristic width w being C a constant. Substituting this expression
into Eqs. (39) and (40) and performing the integrals (see Grad-
shteyn & Ryzhik 2007) yields

A(k) = C

r
1
⇡

wk e�
w2
4 k2

cos(zsk), (42)

B(k) = C

r
1
⇡

wk e�
w2
4 k2

sin(zsk). (43)

The solution ↵(r, z) is obtained by substituting the previous coef-
ficients in Eq. (37) and integrating with respect to k. This integral
over the semi-infinite range does not have an analytical solution
and must be calculated numerically. We have used Mathematica
to compute the integral.
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Fig. 2. Potential magnetic field lines and isosurfaces calculated numer-
ically for a non-symmetric case along the x�direction. In this example,
the following parameters have been used, w1 = w2 = 1/4, z1 = �3/4,
z2 = 1 and C1 = 1, C2 = �0.5.

Since Eq. (29) is a linear PDE, a superposition of, for ex-
ample, several Gaussian profiles at distinct locations and with
di↵erent amplitudes is readily constructed using the previous ex-
pressions. Once the profile ↵(r, z) is known a change from cylin-
drical to Cartesian coordinates is needed and taking into account
that our reference level is located at zmin the symmetry axis in
cylindrical coordinates is situated at a depth zd below zmin. In
Fig. 2 we show an example of the superposition of two Gaus-
sians with a certain values of the parameters. In this case the two
constants C1 and C2 have opposite signs. The constructed struc-
ture has a central region where the magnetic field is open, as we
see on the top face of the box, and could represent a CH that is
surrounded by two AR with closed field lines. The configuration
still has rotational symmetry, because surfaces of constant � are
still planes.

Interestingly, if we assume that the factors C1 and C2 have
the same sign, the opposite of the situation shown in Fig. 2, the
topology of the magnetic field changes and it may happen that
at some points the magnetic field becomes zero, i.e., there are
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Fig. 3. Potential magnetic field lines and isosurfaces that include
X�points. A visible critical point is located around x = 0.5 and y = 0.5
but due to rotational symmetry it is repeated along a circular path, i.e.,
it is in reality a null line. The same parameters as in Fig. 2 have been
used except that C1 and C2 have the same sign now.

magnetic null points. According to the definition of the mag-
netic field in terms of the EPs and due to the symmetry in the
azimuthal direction assumed in this section (� = ✓) the only pos-
sibility to satisfy B = 0 is that r↵ = 0. Since ↵ depends on r
and z only, the last condition means that at a magnetic null point,
which is precisely a critical point in a mathematical sense, ↵(r, z)
has either a local minimum, a local maximum or a saddle point.
Minima or maxima of ↵ correspond to O-type magnetic nulls,
whereas saddle points correspond to X-type null points. An ex-
ample that includes an X�type magnetic field structure is shown
in Fig. 3. In reality, this is actually a null line (a curve where the
magnetic field vanishes) due to the rotational symmetry. This is
therefore essentially an X�point in a 2D sense, since the charac-
teristics of a truly 3D null point are not present in this example,
there is no spine line or fan plane (see for example Parnell et al.
1996; Priest & Forbes 2007). The connectivity of the magnetic
field lines changes when moving across the separatrix surfaces
which intersect at the null line. It is known that, contrary to iso-
lated 3D null points, null lines can be locally described using EPs
(see Hesse & Schindler 1988), as in the present case. However,
it is also known that magnetic null lines are structurally unsta-
ble, i.e. any arbitrarily small additional magnetic field will either
generate a magnetic field without nulls or one with isolated nulls
(e.g. Schindler et al. 1988).

5. The non-potential magnetic field in 3D:
incorporating the effect of shear

The general potential solutions presented in the previous section
have rotational symmetry with respect the axis underneath zmin
where we prescribe the form of ↵. These solutions do not ex-
plicitly include shear and hence no field-aligned component of
the current density. In the present section we discuss di↵erent
methods to incorporate magnetic shear to the magnetic structure
yielding to non-potential solutions. The problem is not straight-
forward since we need to work with the EPs instead of the mag-
netic field components. There are several possible approaches to
attack this problem.

The first method is based on the use of known analytical ex-
pressions for sheared bipolar magnetic configurations. For exam-
ple, Cuperman et al. (1989) give the three magnetic field compo-
nents in terms of a parameter that measures the amount of shear
in the structure, this parameter is called here a (a = 0 corre-
sponds to the potential solution given by Eqs. (22)-(24)). Even
with the known expressions for the magnetic field components
the calculation of the corresponding EPs when a is di↵erent from
zero is not an easy task due to the nonlinear character of the
equations. One possibility is to use an asymptotic expansion, as
in for example Birn & Schindler (1981) (see the explanation for
the technique in Schindler 2006), to obtain approximate expres-
sions for the EPs. It turns out that this approach is rather involved
and we have not been able to find analytical or semi-analytical
solutions. Another option is to calculate ↵ and � numerically us-
ing the computation of the magnetic field lines, known in this
case, as it was proposed by Stern (1970). The idea is that if the
EPs are known on a given surface, then tracking the intersection
of any field line with this surface provides the values of the Eu-
ler parameters on the magnetic field lines and therefore on any
point of the domain (as long as all the field lines intersect the
reference surface). The foremost limitation of this method is that
we must know first the magnetic field distribution in 3D in order
to calculate the EPs, and this is not the typical situation.

We propose here a method that we think it is more flexible
that the previous approaches. It is based on transforming the Eu-
ler variables in the potential situation in such a way that they lead
to magnetically sheared states. Again gas pressure and gravity
are added once the magnetically force-free solution is obtained.
The method is precisely based on directly shearing the EPs at
z = 0 and also at the other faces of the box but still keeping a
rectangular shape for the domain. To do so we apply an a�ne
coordinate shear transformation defined by x0 = x + syy and
y0 = sxx + y, where sx and sy are the shear factors in the x
and y�directions. This transformation produces the e↵ect that
we seek for on the magnetic field as it is demonstrated in the
following. For example, the vertical component of the magnetic
field at z = 0 is according to Eq. (7)

Bz0(x, y, 0) = @x↵(x, y, 0) @y�(x, y, 0)
� @y↵(x, y, 0) @x�(x, y, 0), (44)

and the shear transformation changes Bz0 to Bz1

Bz1(x, y, 0) = @x↵(x0, y0, 0) @y�(x0, y0, 0)
� @y↵(x0, y0, 0) @x�(x0, y0, 0). (45)

Using the chain rule for multivariable functions and the coor-
dinate transformation it is not di�cult to find that the previous
expression reduces to

Bz1(x, y, 0) = Bz0(x0, y0, 0)
⇣
1 � sxsy

⌘
, (46)

meaning that the final magnetic field is the initial magnetic pro-
file but sheared, due to the presence of the primed coordinates
in the argument of Bz0, times a factor that is proportional to the
shear parameters in each direction. The same applies to the mag-
netic field components perpendicular to the rest of the faces of
the box.

The previous idea of applying a deformation on the EPs is
developed further. We define another transformation

x0 = x + g(y), (47)
y0 = y + f (x), (48)
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which can be shown that leads to

Bz1(x, y, 0) = Bz0(x0, y0, 0)
 
1 �

d f
dx

dg
dy

!
. (49)

Now the functions f (x) and g(y) can be conveniently chosen to
make the parenthesis of the previous equation to be independent
of x and y, ensuring that the transformation on the EPs produces
exactly the expected shear on the vertical component of the
magnetic field. The shear transformation previously discussed
fits into this category as a particular case (where f (x) = sxx,
g(y) = syy) but there are other alternatives that allow us to incor-
porate families of changes on the magnetic field (that are not nec-
essarily a�ne transformations). For example, we can start with
a potential solution that is axially symmetric and trough a trans-
formation achieve a non-symmetric solution. To this purpose we
chose

g(y) = 0, (50)

f (x) = a0 e�
⇣ x�x0

w

⌘2

. (51)

This transformation makes the parenthesis of Eq. (49) to be one
and produces the e↵ect of shifting in the y�direction an amount
a0 the magnetic field around x = x0 within a typical distance w.
This is a rather simple way of creating non-symmetric profiles
for the EPs starting from symmetric known solutions.

Examples of the application of the two transformations on
the EPs explained above, that lead to particular sheared magnetic
field configurations, are discussed in Sect. 7.3.

6. The numerical method

Once that we have an initial magnetic distribution uncoupled
from the plasma we aim at finding solutions to Eqs. (9) and (10).
Unfortunately, analytical solutions to these equations are ex-
traordinarily di�cult to obtain, especially if the e↵ect of gas
pressure and gravity are included in the model. Ignoring grav-
ity and gas pressure may lead to analytical solutions under some
symmetry conditions and some example have been shown in
Sect. 4.2. But in general numerical techniques are required to ob-
tain solutions to the equilibrium equations. In the present work
and in order to solve the PDEs with the corresponding boundary
conditions we use the finite element method (FEM) (for details
see, e.g. Zienkiewicz et al. 2013; Ganesan & Tobiska 2017).

We have used the FEM implemented in Mathematica to
solve linear and nonlinear PDEs. In general, we have found a
good performance of the software, which uses parallelisation to
speed up the computation time. The PDEs must be introduced
into the code in divergence form (see Appendix A). Apart from
the BCs at the six faces of the cuboid an initial condition for
the solution is required by the numerical algorithm. This initial
condition has been chosen to be the potential solution calculated
using the analytical expressions of Sect. 4 and applying the pro-
cedure to include shear explained in Sect. 5. The problems ad-
dressed in the present work do not require the use of continuation
methods to calculate sequences of equilibria and detect the pres-
ence of bifurcation points (see for example Neukirch 1993a,b;
Romeou & Neukirch 1999). The simple strategy of slowly vary-
ing a parameter, calculate a solution and use it as the initial con-
dition for the following step has been shown to be su�cient for
the type of equilibria considered in this paper.

In most of the calculations we have used a non-uniform
numerical mesh with refinement around the region where the
strongest magnetic field is prescribed, i.e., around the center of

the face z = zmin. An example of the mesh is shown in Fig. 4.
In this configuration the mesh is basically the product of three
non-uniform meshes, two of them refined around the center (in
the x and y directions) and another refined around zmin.

Fig. 4. Typical mesh structure used in the finite element calculations.
The x�axis and y�axis point along the orange and green faces of the
box, while the z�axis is vertical. A non-uniform grid in each direction
has been used to improve the accuracy of the calculations. The most
refined region of the grid is located around x = y = z = 0. In this
example the grid has 62,500 elements.

Several tests have been performed to validate the obtained
numerical solutions. The first test is to consider the potential case
(no gas pressure or gravity) and use the analytical potential solu-
tion given by Eqs. (25) and (26) as boundary conditions at the six
faces of the cuboid and also as the initial condition in the whole
3D box. The discrepancies between the numerically computed
solution and the analytical results are very small and decrease as
the number of mesh elements is increased. For non-potential cal-
culations, using again the potential solution as BC and as the ini-
tial condition, we have calculated the corresponding volumetric
and surface integrals in Eq. (17) for the numerically obtained so-
lutions. The computations indicate that the numerical error in the
expression of the virial theorem is typically around 2% and be-
comes smaller when the number of finite elements is increased.
This is a clear indication that the calculated equilibria, under the
presence of gas pressure and gravity are correct.

The numerical di�culties found in the present problem are in
some cases related to the fact that the the initial condition is not
su�ciently close to the actual solution. Another di�culty is due
to the potential solution imposed at the boundaries, especially
at the upper boundary, which may lead to convergence issues
because the system is forced to satisfy the BCs even under the
presence of other forces such as the gas pressure gradient and the
gravity force. This last issue is more relevant in the case when
the plasma-� exceeds the value of one near the upper boundary.

7. Equilibrium calculations: numerical results

The inclusion of gas pressure and gravity changes the behaviour
of the magnetic field and leads to a non-potential structure that
needs to be computed. The functional dependencies of gas pres-
sure and temperature on the EPs allows us the calculation of
a wide range of di↵erent equilibrium configurations. We begin
with the most simple cases and then the complexity of the mod-
els is gradually increased.

Hereafter we assume that temperature does not depend ex-
plicitly on the coordinate z (but this is not a constraint in the
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equations considered here). In this case Eq. (12) leads to the ex-
ponentially stratified atmosphere of the form

p(↵, �, z) = p0(↵, �) e�
µ̄g

RT (↵,�) z. (52)

The isothermal assumption along the magnetic field lines has
some implications regarding the stability of the system that will
be discussed in Sect. 8. For the moment we concentrate on the
analysis of di↵erent equilibrium configurations.

7.1. Functional dependence on ↵

In order to obtain an equilibrium we have the freedom to pre-
scribe the functional dependence of pressure and temperature on
↵ and �. For simplicity we focus on the situation that is inde-
pendent of �. A useful functional dependence for gas pressure
is

p0(↵) = pC + (pAR � pC) (↵/↵ref)2 , (53)

where pC is the coronal pressure, pAR the AR pressure and ↵ref
a reference value used for normalisation purposes. We assume
that pAR > pC and since the dependence in Eq. (53) is with the
square of ↵ we ensure that gas pressure is positive everywhere
(↵ is not necessarily a positive number). A possible choice for
the temperature is,

T (↵) = TC + (TAR � TC) (↵/↵ref)2 , (54)

where TC is the coronal pressure and TAR the temperature at the
core of the AR (we assume that TAR > TC). Applying the ideal
gas law at the center of the structure and at the reference coronal
part it is not di�cult to find the following relationship

⇢AR

⇢C
=

pAR

pC

TC

TAR
. (55)

The condition pAR/pC > TAR/TC needs to be satisfied in or-
der to represent an overdense region with respect to the envi-
ronment. We typically impose that TAR/TC = 2, i.e., the AR
core is assumed to be twice as warm as the coronal environment,
and pAR/pC is taken to be at least four, although larger values
are used in some special cases. Note that the plasma density is
calculated from the ideal gas law using the know pressure and
temperature profiles once that ↵(x, y, z) and �(x, y, z) have been
obtained numerically.

7.2. Elementary example

An example of an equilibrium numerically obtained with the
previous pressure and temperature dependencies on ↵ is shown
in Fig. 5 (top panel). We observe the bipolar distribution of the
magnetic field but also the density concentration at the core of
the AR. As the modified plasma-� increases, the bipolar mag-
netic field expands to compensate the e↵ect of a high pressure
core. This e↵ect is evident from the comparison of top panel
and bottom panel of Fig. 5. The magnetic field lines that shown
the largest displacements are located at the lobes of the bipolar
region. This can be explained by the interplay of the di↵erent
forces. Consider the line that starts at x = 0, y = 0, z = 0 and
ends at x = 0, y = 0 and z = zmax. This line matches with the
apex of all the magnetic field lines that are on the plane y = 0.
In the potential case at any point on the line there is a balance
between the tension force pointing downward and the magnetic
pressure force pointing upward. In the non-potential situation
a new equilibrium is achieved on our reference line where the
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Fig. 5. Magnetic field lines and volume density (normalised to the coro-
nal density) for �00 = 1.4 ⇥ 10�3 (top panel) and for �00 = 1.4 ⇥ 10�1

(bottom panel). In this example pAR = 4pC, TAR = 2TC, d = 0.25,
z0 = 0.1 and ↵ref = ↵(0, 0, 0).

magnetic tension and the gravity force point downward while
the total pressure force (gas plus magnetic) is pointing upward,
balancing out the total downward force. In comparison to the
potential case the magnetic forces are weaker and the magnetic
field lines are displaced in the vertical direction. This last e↵ect
is more clear at the sides of the bipolar region where the gravity
force is not aligned with the tension force as in our central ref-
erence line. In fact, these magnetic field lines are not coplanar
although this feature is not visible in the plots.

From Fig. 5 we also realise that the density enhancement
across the core of the AR in the x�direction has a shorter spa-
tial scale than that along the y�direction where the density is
much more elongated. This is because ↵ changes more rapidly
in the x than in the y coordinate and this a↵ects the pressure, the
temperature and thus the density distribution of the AR. The ro-
tational symmetry of the magnetic field also contributes to have
elongated structures in the y�direction.

The temperature distribution of the AR is displayed in Fig. 6.
It shows a hot core at 2 MK that smoothly matches with the
coronal temperature of 1 MK of the environment. The spatial
distribution of the temperature and the density within the core of
the AR are not exactly identical (compare Fig. 6 with Fig. 5). In
particular, the temperature is more localised towards the center
of the AR. We remind the reader that density is constructed from
the ideal gas law using the assumed profiles for pressure and
temperature which depend only on ↵.

The local plasma-� is another quantity of relevance for the
equilibrium. It is shown in Fig. 7 as a set of concentric isosur-
faces. At the AR core this parameter is rather low, typically be-
low 0.001 but as we move outwards the values continuously in-
crease. Depending on the reference plasma-� in the system, i.e.,
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Fig. 6. Magnetic field lines and temperature volume for the same model
as in Fig. 5 bottom panel. Temperature is normalised to 1 MK.
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Fig. 7. Magnetic field lines and plasma-� isosurfaces. The three iso-
surfaces represent values of 0.1, 0.01, 0.001, when moving from the
exterior to the interior surfaces. This example corresponds to the case
shown in Fig. 5 top panel.

�00, it may happen that it is well above one. This agrees with the
inferred behaviour from observations. Gary (2001) found that
although the plasma-� is typically below one in the corona, it
takes values greater than one below the chromosphere (not in-
cluded in our model) and moving from the photosphere upwards
it can return to values around 1 at relatively low coronal heights,
typically of the order of 1.2 solar radii. Therefore, values of the
plasma-� larger than one near the upper boundary of our domain
should not be considered as unrealistic.

To understand the e↵ect of changing the plasma-� in the sys-
tem we have varied this parameter and calculated a set of equilib-
ria using the symmetric bipole as boundary condition. For each
equilibrium we have computed the di↵erent terms in the virial
theorem, Eq. (17), by numerically evaluating the surface inte-
grals in 2D and the volumetric integrals in 3D. As mentioned
earlier in Sect. 6 the agreement of the numerical results with the
virial theorem is excellent, which is an indication of the quality
of the numerical solutions.

7.3. Compound examples

Once we know the main characteristics of the simple symmet-
ric bipolar magnetic field we explore other setups. We use the
results presented in Sect. 4.2 which allows us to construct a va-
riety of models that might be of interest and that are used as
boundary conditions. We begin by including magnetic shear and

as in the previous sections, we start with the reference initial po-
tential solution and then the parameters sx and sy related to the
a�ne shear transformation are gradually increased.

An example of a three-dimensional sheared solution is
shown in Fig. 8. The deformations of the isosurfaces of the two
EPs are evident and produced by the magnetic shear that can
be seen at z = 0 in the vertical distribution of the magnetic
field (gray scale). The symmetry is lost in comparison to the po-
tential case. A method to quantify the amount of shear in the
configuration is to compute the integrated current, defined as
HC =

R
V B · J dV. For a purely potential magnetic field we have

that HC = 0 (since J = 0). The current helicity is di↵erent from
zero when the magnetic field is force-free (J ⇥B = 0 but J , 0).
We basically find a linear increase of HC with sy. The inclusion
of gas pressure and gravity modifies the magnetic structure of
the AR as well. There is a dense and hot plasma core in the
present example (similar to that in Fig. 5 but not symmetric, this
is not shown in Fig. 8). Note how the intersection of the EP �
with the computational box is always a straight line, this is due
to the applied BCs. But now the constant � planes are inclined
with respect to the sides of the box in the y�direction (compare
for example with Fig. 1) as a consequence of the applied shear.
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Fig. 8. Non-potential magnetic field lines and magnetic isosurfaces cal-
culated numerically by applying an a�ne shear transformation on the
EPs with sy = 0.6 and sx = sy/4. Gas pressure and gravity are in-
cluded. In this model the minimum plasma beta is around 1.4 ⇥ 10�3

while the maximum is around 2.5, well above one. In this example we
use a bipole with d = 0.25 and z0 = 0.5 in the domain xmin = �2,
xmax = 2, ymin = �2, ymax = 2, zmin = 0 and zmax = 4.

We now apply the transformation to the EPs using the dis-
placement of the polarities on the plane z = 0 given by Eq. (51).
The obtained non-symmetric structure is shown in Fig. 9. This
example indicates the presence of regions of open magnetic field
close to one of the footpoints of the AR and it is the extension
of the case shown in Fig. 2. This equilibrium could be used to
model the interaction of an AR and a CH as was done in 2D in
Terradas et al. (2022). The intersection of the EP �with the upper
and lower boundaries of the computational box is not a straight
line now and it is produced by the specific transformation used
in this example. Interestingly, although not displayed in Fig. 9,
the density is high within the core of the ARs but low (below
the coronal reference value) where the magnetic field lines are
open. This behaviour is due to the dependence of gas pressure
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and temperature with ↵ and agrees with the expected behaviour
in CHs.
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Fig. 9. Non-potential magnetic field lines and isosurfaces calculated nu-
merically by applying a transformation on the EPs using Eq. (51). Gas
pressure and gravity are present. Compare with Fig. 2. In this configu-
ration a0 = 0.6, x0 = 1, w = 1, �00 = 1.4 ⇥ 10�3 and ↵ref = ↵(�1, 0, 0).

Finally, the density profile for a situation that contains a mag-
netic null line is shown in Fig. 10 and it is based on the example
shown in Fig. 3. We have included a small amount of magnetic
shear using the transformation applied in the previous example.
We find a rather non-uniform distribution of the density, but most
of the mass is located in the bipolar region around x = �1 where
the plasma has the maximum temperatures because according to
our model ↵2 has a maximum there. Around the null line the
density and temperature are rather low. The numerical method
is able to converge to an equilibrium solution that contains both
an ordinary AR and a nearby null line under the presence of gas
pressure and gravity.

According to the di↵erent examples shown in this section we
can a�rm that the EPs are useful to calculate a variety of mag-
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Fig. 10. Magnetic field lines and volume density (normalised to the
coronal density) for a situation that contains a null line. In this example
magnetic shear with a0 = 0.3, x0 = 1, and w = 1 has been induced in
the structure. Gas pressure and gravity are present with �00 = 1.4⇥10�3.

netic structures, not necessarily simple, in which the plasma is
coupled to the magnetic field. These configurations can be used
to represent ARs in the solar atmosphere either as isolated enti-
ties or in companion of regions of open magnetic field or even
to describe more involved magnetic topologies that contain null
lines.

8. Stability analysis of the calculated equilibria

So far we have concentrated on the calculation and analysis of
equilibria in 3D but their stability has not been addressed yet. A
question that arises is whether the interplay between the mag-
netic field, gas pressure and gravity may lead to the appearance
of magnetic Rayleigh-Taylor instabilities or Parker’s instabili-
ties, this is related to the second term in Eq. (56). There are two
modes of the magnetic buoyancy instability, the undular mode
with a wavenumber parallel to the magnetic field, and the inter-
change mode with a wavenumber perpendicular to B. The un-
dular mode is typically named the Parker instability after Parker
(1966). The interchange mode is often referred to as the flute
instability or the magnetic Rayleigh–Taylor instability. The un-
dular mode occurs for long wavelength perturbations along the
magnetic field lines and the gas tends to slide downward along
the field from the peaks into the valleys further enhancing the
undulations. On the other hand, the interchange mode occurs
for short wavelength perturbations, when the interchange of two
straight flux tubes reduces the potential energy in the system.
Nevertheless, the most unstable mode has a 3D structure, and
therefore has both a wavevector component parallel and perpen-
dicular to the magnetic field. The instability typically occurs for
short wavelengths in the transverse direction but it is highly de-
pendent on the wavelength parallel along the field, being com-
pletely suppressed for short parallel wavelengths (see for exam-
ple, Fig. 13.1 in Parker 1979).

In general, an equilibrium is stable if and only if the change
in the potential energy, �W, associated to all allowable displace-
ments satisfying appropriate boundary conditions is always posi-
tive, i.e. �W � 0. When the equilibrium configuration is complex
(three-dimensional curved magnetic field in balance with the
pressure gradient and the gravity force) the estimation of the sign
of the potential energy must be inevitably done by numerical
means. We give further details about a numerical approach that
has received little attention in the literature but that it is of con-
siderable utility. Zwingmann (1984, 1987) (see also Schindler
2006) generalised the stability criteria found by Schindler et al.
(1983) and Hood (1984) to three dimensions and showed that the
potential energy can be split into two parts

�W = �Q + �2F. (56)

The term �Q accounts for the purely convective instability and
a stable situation is achieved when (see for example Schindler
et al. 1983)

�
R
µg
@T
@z

� � 1
�
. (57)

This condition is the Schwarzschild criterion for stability against
convection modes projected along the magnetic field lines. Since
in our case according to Eq. (52) there is no explicit dependence
of temperature upon z (but note that ↵ and � depend on x, y and
also z) the previous condition is always satisfied and the system
is convective stable.
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The second term in Eq. (56) can be written as

�2F =
1

2µ0

Z

V
(�↵⇤, ��⇤)D

 
�↵
��

!
dV, (58)

where D is a linear operator written as a 2 ⇥ 2 matrix, where we
have defined �↵ = �⇠ · r↵, �� = �⇠ · r�, and ⇠ represents the
displacement vector. We construct the matrix M, which is the nu-
merical equivalent of the linear MHD operator D when we per-
form a discretization using finite elements. From the mathemat-
ical point of view the matrix M is positive definite if xT Mx > 0
for any vector x (being xT its transpose) and this is in essence the
integrand in Eq. (58). Therefore, if M is positive definite then
the equilibrium is stable and any changes of M from positive
definite to non-definite indicate a transition from stable to unsta-
ble solutions because change the sign of �2F. This is due to the
fact that this matrix is the numerically discretised equivalent of
a su�cient stability functional (when purely convective instabil-
ities are not present in the system) and it turns out that �2F is
the second variation of the free-energy functional introduced by
Grad (1964). This method based on the analysis of the matrix
M has been successfully used in 2D studies (e.g. Zwingmann
1987; Platt & Neukirch 1994; Neukirch & Romeou 2010). If the
configuration is three-dimensional this approach is still valid but
involves significantly larger matrices than in the 2D case and
therefore more computationally intensive calculations. The dis-
advantage of the method is that it does not provide the frequency
or the growth rates of the unstable modes. It just classifies the
system as stable or unstable, which is nevertheless a valuable
piece of information.

The procedure is clear now, after obtaining a solution to the
equilibrium equations, the matrix M associated to the linear op-
erator is constructed and its positiveness is evaluated to assess
the stability of the solution. Mathematica has implemented a
command to test if a matrix is positive definite. In the work
of Zwingmann (1987) the linearised operator is also needed to
solve the equilibrium equations but in our case it is better to con-
struct the matrix M a posteriori once we have computed the equi-
librium. Details about the linear operator are given in Appendix
B.

8.1. Parker’s instability test: horizontal magnetic field

As a test of the numerical procedure based on the matrix M we
have considered the simplified case of a purely horizontal mag-
netic field coupled to gas pressure. Pressure, density and mag-
netic field decay exponentially with height but the sound and
Alfvén speeds are constant, allowing a normal model analysis.
The details about the stability analysis of this elementary con-
figuration can be found in Parker (1966, 1979). The general dis-
persion relation is given by Eq. (13.33) of Parker (1979) and
depending on the choice of the wavenumbers in the three direc-
tions, kx, ky and kz, and the value of the plasma-� (constant in the
domain) the frequency switches from purely real to purely imag-
inary meaning that the system changes from stable to an unstable
state.

We have derived the EPs associated to the previous equilib-
rium, with the magnetic field pointing the x�direction, which
read

↵ = 2B0H e�z/(2H), (59)
� = y, (60)

Fig. 11. Stability diagram for a bipolar configuration. The gray region
corresponds to unstable solutions while the white region to stable states.
The vertical axis represents the density contrast between the core of the
AR and the external environment, while the horizontal axis corresponds
to the reference plasma-�, �00. In this plot we have used a bipole with
d = 0.25 and z0 = 0.5 in the domain xmin = �2, xmax = 2, ymin = �2,
ymax = 2, zmin = 0 and zmax = 4. The temperature contrast, TAR = 2TC,
is the same for all the points.

while gas pressure is

p = p00e�z/H = p00

 
↵

2B0H

!2(1�H/H)

e�z/H , (61)

and has been written in terms of the EP ↵. Here,H = H +H/�00
is the modified pressure scale height that couples the plasma to
the magnetic field (H is the isothermal scale height). The key
parameters of this problem are �00 and the wavelengths that fit
in our computational box, namely,

kx = 2⇡/(2(xmax � xmin)), (62)
ky = 2⇡/(2(ymax � ymin)), (63)
kz = 2⇡/(2(zmax � zmin)). (64)

Using the previous expressions we have tested the stability of
the system using the positive definiteness of the matrix M con-
structed using finite elements. We find that the positive definite-
ness of M changes precisely when the dispersion relation given
by Parker predicts a transformation of a stable solution into an
unstable solution, or vice versa. This match indicates that the
numerical method is correctly implemented and can be confi-
dently used to investigate the stability of more complex equilib-
ria. Small deviations from the theoretical predictions are related
to the fact that in our calculations we are imposing strict line-
tying conditions while in Parker’s calculations Fourier analysis
without imposing line-tying was performed.

8.2. Results for the computed 3D equilibria

When the reference plasma-� is very small most of the numer-
ically calculated equilibria described in Sect. 7 are found to be
stable. However, we have found that increasing this parameter
and changing the pressure contrast (density contrast between the
AR and the environment) may lead to unstable structures. An
example of a stability diagram based on the bipole considered
in Sect. 4.1 is shown in Fig. 11. For a fixed reference plasma-
�, �00, we always find that by increasing the density contrast at
the core of the AR the configuration becomes unstable at some
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point, meaning that a small perturbation in the system will au-
tomatically lead to the growth of the perturbation. The magnetic
field cannot support, under stable conditions, the extra mass load
due to the increase of the density contrast. When the plasma-�
is very small and therefore the magnetic field is very strong in
comparison to the gas pressure, increasing the amount of mass
at the core of the AR makes the model unstable only for very
large and unrealistic density contrasts according to Fig. 11. This
behaviour is as it would be expected from the physical point of
view.

The stable/unstable parameter regions also depend on the
size of the computational box since this parameter changes the
wavenumbers that fit into the domain (see Eqs. (62)-(64)). Start-
ing from a stable situation and increasing the length of the do-
main in each direction inevitably leads to an unstable situation
because the maximum wavelengths increase. In particular the
wavelength along the magnetic field increases because the field
lines are longer in the larger box. The opposite is also true, we
can start with an unstable state but by progressively reducing the
size of the domain a stable situation is eventually achieved. This
is in qualitative agreement with the behaviour found in Parker’s
problem and it is a characteristic feature of the magnetic buoy-
ancy instability.

We have also investigated the e↵ect of shear on the stability
of the configurations. We have not reported the suppression of
the instability by magnetic shear as one would expect for purely
interchange modes. This is an additional indication that the in-
stability found in this work is dominated by to the undular com-
ponent of the 3D modes. Nevertheless, we have not considered
magnetic structures with a large amount of shear that could have
a strong e↵ect on the characteristics of the modes.

9. Discussion and conclusions

We have carried out a first exploratory study of the application
of EPs in 3D to obtain MHS solutions under the presence of gas
pressure and gravity that can represent ARs. Due to the nonlin-
earity of the equilibrium equations one of the main di�culties
of the use of EPs (see Stern 1970) is the calculation of these
variables even when the magnetic field is known. Nevertheless,
we have shown that using the potential solution for the magnetic
field as a starting point, the EPs can be numerically calculated
when departures from the current-free case are considered. In
particular, we have used as initial distributions of ↵ and � analyt-
ical expressions based on an axially symmetric potential config-
uration. Besides the inclusion of the pressure gradient force and
the gravitational force we have additionally incorporated shear
in the magnetic field. We have investigated di↵erent methods
and have found that the most e�cient procedure is to gradually
transform the potential magnetic field at the boundaries of the
domain into a non-potential field by applying specific transfor-
mations that naturally increase the current helicity in the system.
This method is e↵ective and transparent and can be viewed as a
particular case of other families of transformations that could be
investigated in the future.

The choice of the particular functional dependence of gas
pressure and temperature on the EPs determines the type of ther-
mal structure of the models. This choice is in principle arbitrary
but based on the typical features of ARs, with hot and dense
plasma cores, we have shown that assuming that pressure and
temperature are proportional to the square of ↵ (see also Terradas
et al. 2022) we find that we reproduce these basic features of
ARs. It is worth noting that ↵ and � can be gauged and therefore
the thermal structure changes according to the specific gauge.

Constraints on these gauges need to be imposed based on the ob-
servational data. Our models describe the main features of ARs
regarding the di↵use background and in any case they do not in-
tend to explain the fine structure of coronal loops embedded in
ARs which are most likely due to localised heating.

The three-dimensional configurations under force balance
that we have numerically computed can be used in the future
to study the propagation and interaction of global MHD waves
with ARs, i.e. can be used in time-dependent simulations. The
interplay of global MHD waves with CHs, poorly addressed in
the literature due to the lack of 3D models, can be also investi-
gated using the approach proposed in the present paper.

Although the topology of the magnetic field must be simple
to use a description based on EPs (see Sect. 1) we have shown
that it is possible to obtain MHS solutions that include null lines
under the presence of gas pressure and gravity. These critical
points can still be represented using EPs although we have not
investigated geometries with truly 3D null points that may con-
tain spine lines and fan planes, and where the description based
on EPs fails (see Hesse & Schindler 1988). Even with this limi-
tation, studies about the propagation of waves around null lines
can benefit from the models proposed here.

We have provided an initial investigation of the stability
properties of the numerically computed equilibrium configura-
tions by the application of the su�cient stability criterion estab-
lished by Zwingmann (1984, 1987), but here applied in 3D. An
interesting property of the constructed models is that for some
values of the parameters, namely, high plasma-�, dense active
region cores and significantly big spatial domains, the system is
unstable. For these unstable modes the magnetic buoyancy force
dominates over the stabilising e↵ects due to magnetic curvature,
magnetic shear and line-tying, at least in the regime considered
in the present work.

Interestingly, the formalism used in the current paper can be
extended to the case with pressure and temperature (and there-
fore density) changing explicitly with height. This could be used
to include, for example, the e↵ect of an idealised chromosphere
in the model through the presence of a low temperature and a
high density layer. Hence, the method used in this work could
be applied not only to the solar corona but also to lower layers
in the solar atmosphere, as it has been recently done using other
approaches by Zhu & Wiegelmann (2018, 2022). In relation to
this problem, it is important to mention that the instability crite-
rion applied in this work is only valid when no purely convective
instabilities are present. The isothermal case along the magnetic
field lines studied in this paper fits into this category, but this
does not need to be the case in a more realistic situation, spe-
cially if the transition between the chromosphere and corona is
included in the models. Nevertheless, the study of the stability of
an arbitrary non-isothermal 3D configuration is a di�cult task
that inevitably requires the calculation of the full spectrum of
modes through the computation of the MHD eigenmodes. These
computations are even more complex when the e↵ect of flows
are included in the models. This is a more realistic situation than
the static case since there is ubiquitous evidence in the observa-
tions of the presence of flows in the solar corona and specially
in ARs. As a first step we could suppose that the flow is field
aligned and apply a similar formalism as the one used in the
present paper by including additional terms in the equations that
account for the flow e↵ect (see further details in Appendix 1 of
Schindler 2006).

Finally, it is important to emphasise that the families of equi-
libria numerically constructed in the present paper cannot be ex-
pected to model realistic solar ARs in detail. Our results are use-
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ful as direct demonstration of basic physical e↵ects and as ide-
alised situations, but they can still provide some physical insight
into more realistic situations. For example, the energy consider-
ations in the AR (radiative losses, thermal conduction and heat-
ing) and the fine structure due to magnetic loops have been com-
pletely ignored. But even with the limitations of the approach
used in the present paper we think that the utilisation of EPs to
describe ARs is useful and should be investigated in more detail
in the future.
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Appendix A: The divergence form of the operator

The equilibrium equations given by the PDEs in Eqs. (9)-(10) are
written in divergence form. It is not di�cult to show that using
the divergence and the gradient operators the equations are

r · (�C r↵ + Dr�) = �µ0 @�p,
r · (�E r↵ +C r�) = µ0 @↵p, (A.1)

where C, D, and E are 3 ⇥ 3 diagonal matrices given below. The
compact form of the PDEs has some advantages if instead of
Dirichlet conditions Neumann boundary conditions are used and
is in general required when the problem is written in weak form
(typically necessary when using finite elements).

The matrices that appear in the divergence form of Eq. (A.1)
are

C =

0
BBBBBB@
@y↵ @y� + @z↵ @z� 0 0

0 @x↵ @x� + @z↵ @z� 0
0 0 @x↵ @x� + @y↵ @y�

1
CCCCCCA ,

(A.2)

D =

0
BBBBBBB@
(@y↵)2 + (@z↵)2 0 0

0 (@x↵)2 + (@z↵)2 0
0 0 (@x↵)2 + (@y↵)2

1
CCCCCCCA ,

(A.3)

E =

0
BBBBBBB@
(@y�)2 + (@z�)2 0 0

0 (@x�)2 + (@z�)2 0
0 0 (@x�)2 + (@y�)2

1
CCCCCCCA .

(A.4)

Appendix B: The divergence form of the linearised
operator

The linear operator is derived by linearising Eq. (A.1), i.e. by as-
suming that ↵0 and �0 are small perturbations on the initial equi-
librium vales ↵ and �. Using the Taylor expansion of gas pressure
around the equilibrium and keeping terms up to first order in the
perturbed quantities, the result, written again in divergence form
for completeness, is

�r · (Cr↵0) � µ0@
2
↵↵p↵0 + r · (D̄r�0) + J · r�0 � µ0@

2
↵�p�

0 = 0,

r · (Dr↵0) � J · r↵0 � µ0@
2
↵�p↵

0
� r · (C̄r�0) � µ0@

2
��p�

0 = 0,
(B.1)

where J is the equilibrium current density given by Eq. (8), while

C =

0
BBBBBBB@
(@y�)2 + (@z�)2

�@y� @x� �@z� @x�
�@y� @x� (@x�)2 + (@z�)2

�@y� @z�
�@z� @x� �@y� @z� (@x�)2 + (@y�)2

1
CCCCCCCA , (B.2)

and

D =

0
BBBBBB@
@y↵ @y� + @z↵ @z� �@y↵ @x� �@z↵ @x�
�@x↵ @y� @x↵ @x� + @z↵ @z� �@z↵ @y�
�@x↵ @z� �@y↵ @z� @x↵ @x� + @y↵ @y�

1
CCCCCCA .

(B.3)

The matrix C̄ is equal to C but with the substitution of � by ↵,
while D̄ is the same as D, but with ↵ and � swapped. The non-
divergence form of the linear operator is given in Eq. (2.5) of
Zwingmann (1987).
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